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Vibration analysis of rotating machinery is a proven means
of detecting flaws and degradation. To get the maximum re-
turn from such an effort, you must understand how the geo-
metric interplay of machine components determines the noise
and vibration spectra that will be exhibited. This article is in-
tended as an introduction-to-topic for the new diagnostician;
it discusses gears and bearings, essential elements that can in-
troduce dominant peaks in a machine spectrum.

We will review the determination of certain frequencies at
which oscillating operating forces are developed in simple
machine elements. We will also discuss why signature spectra
may contain sums and differences of such frequencies in ad-
dition to the more obvious harmonic multiples. Basic “tools of
the trade” will be reviewed and demonstrated by example.

Be Prepared to be Surprised . . . Have a Shopping List
Even seemingly simple machines can exhibit relatively com-

plex spectra with a myriad of peaks attributable to several dif-
ferent physical mechanisms. In order to decipher what the
machine is trying to tell you, it is necessary to perform some
simple geometric analysis before embarking on field measure-
ments. You owe it to yourself to prepare a list of frequencies
that you expect to dominate the signatures. Then, when an
unexpected component enters the picture, you are prepared to
recognize it as such.

We will examine some measurements from the small ma-
chine shown in Figure 1. This is a tiny two-stage gear reduc-
tion box driven by a six-pole DC motor. It is incorporated in
one of those fiendish devices that snatches your hard-earned
dollar, subjects it to rude inspection and rewards you with a
handful of “pocket anchors.” The two gear-like wheels visible
in this photo drive a pair of soft rubber Gilmer belts used to
suck your banknote into a slot (and often to reject it rudely in
protest of your billfold maintenance program).

The internal workings of this drive are shown schematically
in Figure 2. A small spur gear mounted on the motor shaft
drives a larger gear on an intermediate shaft. This transfer shaft
also spins a worm gear, which engages a mating helical spur
mounted to the output shaft. The axis of the output shaft is thus
perpendicular to the axes of the motor and transfer shafts.

Hence our machine is characterized by three shafts and two
gear meshes. Each of these elements influences the nature of
the machine’s vibration. To understand measurements made
from the machine, we need to understand the details of its
geometry. In the main, this simply means that repetitive ele-
ments such as gear teeth must be counted. This sounds like a
simple task, but when drawings are not available it can be a
time consuming nuisance. Still, without these basic facts, you
will not be “qualified to be surprised” by the dynamics of the
machine you must diagnose.

Table 1 illustrates the start of a “shopping list” for the bill
changer. This list contains the speeds of the shafts, the expected
“mesh” frequencies and various “fault mechanism” frequen-
cies including such items as the contact rate between motor
brushes and commutator segments. Knowing the geometry of
the machine allows us to determine these frequencies relative
to the turning speed of one shaft. In our example, the transfer
shaft turns 10/23 as fast as the motor and the output shaft ro-
tates at 1/16 of this speed. Normally, the output shaft is used
as the reference as the typical operating speed of this shaft is
most frequently known. The relative speeds shown in Table 1
are normalized with respect to the output shaft.

Multiplying the relative speeds by the rotational rate of the
reference shaft allows a list of anticipated dominant frequen-
cies to be written for a single operating point. This is directly
useful information for a constant-speed machine. When a vari-
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Figure 1: Our test object is the drive mechanism for a currency bill ex-
changer, a two-stage 36.8:1 reduction gear-train powered by a small DC
motor.

Figure 2: Schematic diagram of currency bill exchanger shows three
shafts and two stages of gear reduction. Pertinent geometric features
are noted.

Figure 3. Tooth numbering convention shown on two spur gears.
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Shafts
  Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gear Meshes
  Secondary (high speed) Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Assembly Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Hunting Tooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  Primary (low speed) Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Assembly Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Hunting Tooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gear Faults
  Eccentric Motor Pinion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Eccentric Transfer Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
  Eccentric Transfer Worm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Eccentric Output Gear . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .

Other Faults
  Magnetic Pole-Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  Brush/Segment Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
16

36.8

16
16
1

368
368
1.60

368 ±36.8 = 331.2, 404.8
368 ±16 = 352, 384

16 ±16 = 0, 32
16 ±1 = 15, 17

6× Motor Shaft = 220.8
12× Motor Shaft = 441.6

125 RPM
2.08

33.28
76.67

33.28
33.28
2.08

766.67
766.67

3.33

690.00, 841.98
733.33, 800.00

0.00, 66.67
31.25, 35.42

460.00
920.00

160 RPM
2.67

42.67
98.13

42.67
42.67
2.67

981.33
981.33

4.27

883.20, 1080.82
938.67, 1024.00

0.00, 85.33
40.00, 45.33

588.80
1177.60

Item Relative Speed Operating Speed (Hz)

Table 1. An initial "shopping list" for the currency exchanger generated from the schematic geometry.

Figure 5. (a) Tooth-mating sequence between 6-tooth pinion and 8-tooth
gear. Note that each pinion tooth meshes with only four gear teeth; each
gear tooth engages only three pinion teeth. (b) Tooth-mating sequence
between a 6-tooth pinion and 9-tooth gear. Note that each pinion tooth
meshes with three gear teeth; each gear tooth meshes with two pinion
teeth.

Figure 4. (a) Tooth-mating sequence between 6-tooth gear and 6-tooth
pinion. Note that only like-numbered teeth enter mesh together. (b)
Tooth-mating sequence between 6-tooth pinion and 7-tooth gear. Note
each pinion tooth meshes with every gear tooth and viceversa.
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able speed situation is encountered, it is wise to evaluate this
list at the extremes of the speed range; this defines the fre-
quency span and resolution required to study the machine at
any speed within its range.

We will depart from this example for a short while to derive
some of the typical entries that appear on such shopping lists.
And we shall return to this machine for some experimental ex-
hibits.

Some Necessary Dental Work
The most important step in any gear analysis is to count the

teeth on every gear. This not only allows you to determine
“shopping list frequencies,” it allows you to determine if the
signature spectra are likely to change simply because the ma-
chine was disassembled and reassembled without marking
engaging gears. You can also determine whether sub-harmon-
ics of certain frequencies are likely to appear in the spectra.

Figure 3 shows the engagement of two small spur gears. By
convention, the smaller of these is termed the pinion, the larger
the gear. The gear ratio (more properly, the gear reduction ra-
tio) is simply the number of teeth on the gear Tg divided by the
number of pinion teeth Tp. Clearly, the speed of the pinion shaft
must always be equal to the speed of the gear shaft multiplied
by this ratio and the torque carried by the pinion shaft is (es-
sentially) equal to that carried by the gear shaft divided by the
gear ratio. The same “laws” govern the mating of two bevel

gears; the sole difference is that the axes of the pinion and gear
shafts are perpendicular rather than parallel.

But, Tg and Tp tell us far more than the speed and torque
ratio. Note the tooth numbering illustrated in Figure 3. The
teeth of both elements are numbered in the sequence of engage-
ment starting from the current point of mesh. Consider the
pattern of tooth engagement that occurs as the gears turn. Fig-
ures 4 and 5 illustrate such patterns for sets of slightly differ-
ent ratios.

In Figure 4a, two identical 6-tooth gears are rotated. On ev-
ery rotation, like-numbered teeth enter the mesh. Hence, pin-
ion tooth 3 always conveys its load to gear tooth 3, and so on.
Since like-numbered gear and pinion tooth-pairs are mated
throughout their service life, it is likely that they will develop
complimentary wear patterns to compensate for any minute im-
perfections of manufacture or installation. Should this gear pair
be separated during a repair, the odds are 5 to 1 that this same
arrangement of parts will not be restored unless the mating
teeth are marked at disassembly. In subsequent operation, the
mating teeth will no longer have their hard-won complimen-
tary wear patterns; this can cause a signature change.

Figure 4b illustrates an entirely different situation. Here, a
6-tooth pinion drives a 7-tooth gear. Note that every pinion
tooth eventually drives every gear tooth. All 42 possible tooth-
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mating combinations are encountered in seven pinion revolu-
tions (six gear revolutions). That is, this gear set can only be
assembled in one way and there is no benefit to marking its
components at disassembly. Such a gear set is said to have one
assembly phase in contrast to the set of Figure 4a, which has
six assembly phases.

Figure 5 shows two examples between these extremes. In Fig-
ure 5a, a 6-tooth pinion drives an 8-tooth gear. Note that every
pinion tooth comes into mesh with only four gear teeth. Every
gear tooth mates with exactly three pinion teeth. In short, this
gear-set has two assembly phases. By following the path lines
between tooth-pair intersection points, you will note that a
given pair of teeth enters the mesh once every 3 gear rotations
(every 4 pinion rotations).

Figure 5b presents a gear-set with three assembly phases.
Here, a 6-tooth pinion mates with a 9-tooth gear. Each pinion
tooth engages three gear teeth while each gear tooth enters mesh
with either of two pinion teeth. A given pair of teeth enters the
mesh every 2 gear rotations corresponding to 3 pinion rotations.

We can summarize these important observations in a few
useful equations. Equation (1) is the key to understanding the
gear set. Nap is the largest common (integer) factor contained
in both Tp and Tg. Thus for the 6:6 set of Figure 4a, Nap equals
6. For the 6:7 set of Figure 4b, Nap equals 1. The 6:8 set of Fig-
ure 5a has a Nap of 2, while the 6:9 set of Figure 5b has an Nap
of 3. This common factor is equal to the number of assembly
phases between the gears.

where:
R = the gear reduction ratio

Tg = the number of teeth on the gear
Tp = the number of teeth on the pinion

Nap = the number of assembly phases for the gear set . . . nu-
merically equal to the highest (integer) common factor
between Tg and Tp

tg = the number of gear teeth per assembly phase
tp = the number of pinion teeth per assembly phase
Figure 6 illustrates one of the twelve (Nap) possible assem-

bly phases of a 108:120 gear set. The 9 pinion teeth (tp) and 10
gear teeth (tg) in this phase are marked. While all of the pinion
and gear teeth participate in mesh, any tooth within this phase
can only contact the mates shown. Clearly, this gear-pair may
be assembled with twelve different tooth-mating sequences.

Worm drives are characterized by the same equations. Rather
than counting teeth, we need to determine the number of par-
allel screwlike threads on the pinion; this integer is used as
Tp. Figure 7 illustrates the second-stage reduction in our bill-
changer, a single-thread (Tp = tp = 1) design.

The frequencies defined by Equations (2) through (6) can all
be expected to be present (with varying intensities) in any gear-
ing signature. Invariably, f mesh will be a dominant component
in any noise or vibration spectrum measured from a gearbox.
Note that gear mesh is a much higher frequency than the shaft

speeds, the assembly phase passage frequency and the “hunt-
ing tooth” frequency. In fact, all of these frequencies are inte-
ger subharmonics of f mesh. The hunting-tooth frequency is the
lowest characteristic frequency of the gear-pair and the remain-
ing characteristic frequencies are integer harmonics of fhunting

tooth.

where:
RPMgear = the gear-shaft turning speed in RPM

fgear = the (same) gear-turning frequency in Hertz

where:
fpinion = the turning speed of the pinion shaft in Hertz

where:
fmesh = the frequency at which teeth-pairs enter the gear

mesh

where:
fassembly pass = the frequency at which an assembly phase

passes through mesh

where:
fhunting tooth = the frequency at which a specific tooth pair

mates in mesh
Gears function to transmit torque from one shaft to another.

If this were a perfect world, they would do so with the quiet
smoothness of a pair of rolling elements in perfect contact with
infinite friction at their juncture. Tooth profiles are carefully
designed to pass load from one tooth to the next as smoothly
as possible. They engage one another with an intended rolling
contact and as little sliding as possible to preserve high effi-
ciency. Unfortunately, perfection has eluded us and real gears
perform this load hand-off between adjacent tooth-pairs with
a certain amount of impacting, sliding, bending and other so-
cially undesirable behavior.

This “mating activity” repeats at the mesh frequency. fmesh
and its harmonics are always present in the noise and vibra-
tion spectra, most particularly when the gears are lightly
loaded. Because the torque transfer is affected as a force trans-
fer at a radial distance from the shaft axes, these events are
detectable in translational measurements in the case of the

Figure 6. Mesh on a 108-tooth pinion and 120-tooth gear exhibits 12
assembly phases. The teeth of one assembly phase are marked.

Figure 7. Mesh between a worm pinion and spur gear. The equivalent
tooth-count for the worm is equal to the number of parallel threads (one,
in this case) cut upon it.
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machine.
The remaining characteristic frequencies, fhunting tooth, fgear,

fpinion and fassembly pass are normally less evident in a smooth
gear-set. The shaft speeds fgear and fpinion may appear in vibra-
tion spectra due to unbalance of the driver or driven element.
Second harmonics of these terms often accompany misalign-
ment of shafting (or loose mounting of a drivetrain component).
Generally, these frequencies indicate problems external to the
gear-set.

In contrast, a small eccentricity of the pinion on its shaft will
induce vibration at the sum and difference frequencies, fmesh
+ fpinion and fmesh − fpinion, while a similar problem with the
gear will produce detectable activity at fmesh + fpinion and fmesh
− fpinion. In general, the amplitude exhibited at a “sum fre-
quency” will be (about) equal to that at the corresponding “dif-
ference frequency.” That is, the eccentricity signatures exhibit
symmetric sidebands about the mesh frequency. This behav-
ior comes about because the shaft-frequency eccentricity modu-
lates the amplitude of dynamic forces present in the mesh.

Amplitude modulation involves a time-domain multiplica-
tion. For simplicity, assume that a “normal” acceleration sig-
nature initially contains a “gear mesh” component in response
to the sinusoidal force:

Further assume that the gear then becomes slightly eccentric
on its shaft and that the “normalized” degree of its deviation
from uniform contact at the mesh point can be expressed as:

The dynamic mesh force then becomes:

This model is simplistic, but it makes the telling point that
time-domain multiplication of two sinusoids gives rise to
equal-amplitude sinusoids at the sum and difference frequen-
cies. In practice, both the mesh frequency carrier and the gear-
shaft frequency modulator can have many harmonics (of vari-
ous phasing) present. This means that the resulting modulated
signal can be more complicated with distinct tones appearing
at frequencies of nfmesh ±kfgear, where n and k are integer con-
stants. Normally, the terms symmetrically disposed about fmesh
(where n equals 1) will dominate. Sidebands associated with
low k value are usually the most detectable. (But, remember
resonances and “being prepared to be surprised?”)

Gear wear and clearance changes in plain bearings can cause
a change in the fgear and fpinion sidebands. So can an unrelated
repair that causes the gears to be re-mated with “new” Assem-
bly Phasing. Such unintended signature change may also be
accompanied by a rise in the ±fassembly pass sidebands of f mesh
and its harmonics (when these terms are unique).

In a 1:1 gearing, Nap = Tp = Tg, so that tp = tg = 1. Hence,
fassembly pass =  fgear  =  fpinion and the assembly phase passage
frequency is not a unique characteristic.

When the gear-set is designed for uniform distribution of
tooth wear, the gear and pinion tooth-counts share no prime
numbers in common, save 1. In this circumstance, Nap = 1,
resulting in fassembly pass = fmesh . Hence any ±fassembly pass side-
bands of fmesh and its harmonics will appear as either an har-
monic of fmesh or at DC; they will not be uniquely identifiable.

In all other situations, fassembly pass is a unique characteristic
frequency. Since fassembly pass is typically much higher than
either fgear or fpinion, the ±fassembly pass sidebands of fmesh will
be widely spaced from their carrier and are not likely to be
confused as “high k” images of either fgear or fpinion.

The very low frequency fhunting tooth is a clear indicator of
severe local tooth-pair damage such as that encountered when

the mesh has “digested” a significant solid contaminant. This
term also shows up as a pair of symmetric sidebands centered
upon the mesh frequency. It is difficult to detect these fmesh
±fhunting tooth components and differentiates them from gear
mesh (particularly in uniform tooth wear gearing) owing to the
close frequency spacing. An order normalized analysis of at
least TgTp/Nap lines of spectral resolution is required to detect
these indicators. They are worth separating; when they are ob-
served, they typically indicate local tooth damage that can be
seen with the unaided eye.

Of Gears and Astronomy
The preceding figures have shown the simplest of gear in-

terplays, the basic stepping stone of which complex gear sys-
tems may be built. Such systems are frequently discussed in
the literature of our business. There exists another class of
gearing that is less frequently discussed, one that is particu-
larly elegant in its geometric arrangement and functional ca-
pability: the planetary or epicyclic gear train. These systems
incorporate an additional rotational degree-of-freedom with
several benefits in reward for the added complexity.

Planetary systems can provide reduction ratios in excess of
component tooth ratios, permitting more compact reduction
systems. They can permit output torque sharing between two
shafts running at instantaneously different speeds (as in an
automobile differential). They can facilitate input load shar-
ing from two or more asynchronous engines (as in a helicop-
ter transmission). The additional DOF can be controlled by a
cam to derive a prescribed periodic rotary motion from a con-
stant speed source (as in a commercial movie projector).

Figure 8 illustrates the schematic of a very basic epicyclic
speed-reducer. In this system, the innermost Sun gear is driven
by the input shaft. A series of identical planet gears engage the
Sun gear and an internal ring gear cut into the stationary hous-
ing. The Output shaft is affixed to the carrier, a rotating struc-
ture that provides the bearings for the planets. When the Sun
gear rotates, the carrier revolves in the same direction at a
much-reduced speed. The planet gears spin (with opposite
sense) about their own axes and precess with the carrier.

The motion of such a system can best be understood by a
superposition analysis utilizing a sequence of two simple mo-
tional inputs as shown in Figure 9. First, the carrier is “locked”
in position and the housing ring is “freed” to rotate; the planet
gears are rotated through an arbitrary angle, say β. In response
to this input, the Sun and ring gears revolve in opposite direc-
tions. Second, all elements of the gear train are “locked” to-
gether and the entire assembly is rotated backwards as a “rigid
body” until the housing ring gear is in its original position. The
positions of all elements are now identical to those that would

Figure 8. Elements of a simple planetary or epicyclic gear train. In this
example, the input shaft turns the Sun Gear while the output shaft turns
with the Carrier that provides bearings for the multiple (identical)
Planet Gears. The stationary housing is an internally toothed Ring Gear.
Many other configurations using spur and bevel gears are possible.

(7)

(8)

(9)

F t F f t( ) cos( )= 2π mesh

m t e f t( ) cos( )= 2π gear

′ = + ⋅ = + ⋅

= − +

+ +

F t m t F t f t F f t

F f f t F f t

F f f t

mesh

mesh

( ) [ ( )] ( ) [ ( )] ( )

( ) ] ( )

( ) ]

1 1 2 2

2 2

2

e cos cos

e
2

cos[ cos

e
2

cos[

gear mesh

gear mesh

gear

π π

π π

π

Ring Gear (Housing)
with  Tr Internal Teeth

Sun Gear (Ts teeth)
fixed on Input shaft

Planet Gears (Tp teeth)
borne by Carrier

Carrier fixed on Output  shaft
provides bearings for Planet Gears



20 SOUND AND VIBRATION/MAY 1999

have resulted from leaving the ring in its normal “stationary”
position and rotating the input shaft until the planets had spun
through the angle β relative to the Sun and ring gears.

Table 2 presents a tabular analysis of these actions. In the
first row, the rotational effects of the “solar” rotation of a planet
are provided for all elements. In the second row, the “sidereal”
rotations of all elements needed to return the housing to its
proper location are listed. The third row contains the sum of
these two actions and provides the total rotations of all com-
ponents at the completion of the second input. The second col-
umn describes the input shaft, the third the output shaft.

These tabular results are repeated in Table 3, but are normal-
ized by dividing all entries by the output shaft (carrier) rota-
tion. That is, the rotations of all components are presented for
one revolution of the output shaft. From these entries we can
discern:

Since the second step “corrective rotation” of the housing
does not involve the gear meshing in any way, we further rec-
ognize the relationship between the spin frequency of the
planet gears and the output shaft speed to be:

The negative sign in (11) indicates that the planets spin in
the opposite direction from the Sun gear rotation and carrier
precession. The gear mesh frequency is simply the number of
planet gear teeth multiplied by the planet spin frequency and
we may state:

 Note that both the ring/planet and planet/Sun meshes oc-
cur at the same frequency. Other planetary configurations uti-
lizing only spur or bevel gears (but no ring gear) are possible
and these can exhibit two distinct mesh frequencies. Such sys-
tems are also free of the geometric constraint, Tr =  Ts + 2 Tp ,

imposed by the use of a ring.
Two issues of assembly phase must be addressed. The “outer”

mesh between the ring and planets may exhibit Nouter possible
assembly phases (for each planet gear) while the mesh between
the planets and Sun gear may exhibit Ninner. In the spirit of
Equation (1), Nouter is recognized as the largest (integer) com-
mon factor of Tr and Tp, while Ninner is recognized as the larg-
est (integer) common factor of Ts and Tp. This allows the in-
ner and outer mesh assembly phase passage frequencies to be
written in the manner of Equation (5).

In like manner, the system will exhibit two hunting tooth-
frequencies, one for the outer mesh and one for the inner mesh.
These frequencies are determined as in Equation (6), and we
find:

All prior comments regarding the use of these five charac-
teristic frequencies apply to the epicyclic gear drive as well.
Note, however, that this system exhibits N “mesh points” (one
for each planet) and that these points rotate at fout. This gives
rise to additional terms at N fout and  fmesh ± N fout.

Baring the Bearing
Rolling element bearings exhibit a striking geometric simi-

larity to the epicyclic gear train just discussed. Figure 10 il-
lustrates the schematic diagram of a single-row ball bearing.
The relative motions in this system are analogous to those of
the planetary gear system with the ratios between elements
being determined by the rolling diameters of the components.

N balls of diameter d are held between the inner race and
the outer race on a pitch diameter D. The inner race is pressed
on the borne shaft and rotates with it; the outer race is retained
motionless by the stationary bearing housing. The spacing be-
tween the balls is held constant by a pressed cage which al-
lows the balls to spin freely and is, itself, free to precess rela-
tive to the races. The cage and races are most commonly
designed to incline the ball spin axes; this is done to allow the

Table 3. Epicyclic motions normalized to one rotation of the output. 

Normalized
Motion of:

Planet
Gears

Sun Gear
(Input Shaft)

Gear Carrier
(Output Shaft)

Ring Gear
(Housing)

(1) lock carrier,
rotate planet

(2) lock train,
rotate housing

(3) sum of
motions
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Figure 9.Visualizing epicyclic behavior through the superposition of two
motional inputs. First the relative “mesh motions” are input while al-
lowing the housing to rotate; then the housing is returned to its proper
stationary position. Absolute rotations are thus seen as the sum of two
relative rotations, only one of which involves gear-mesh activity.

1. Lock the Carrier so that it cannot rotate
 . . . note initial mesh points
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Table 2. Analysis of epicyclic motion by superposition of two input 
motions (in blue).

Motion of:
Planet
Gears

Sun Gear
(Input Shaft)

Gear Carrier
(Output Shaft)

Ring Gear
(Housing)
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rotate planet
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Table 4. Analysis of epicyclic bearing motion by superposition of two input motions (in blue).

Motion of:

(1) lock cage, rotate ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 

(2) lock, rotate outer race . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) sum of motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

– d

D + d cos α
β

– d

D + d cos α
β

0

Cage

– d

D + d cos α
β

 d

D + d cos α
β

0

Outer Race 
(Bearing Housing)Balls

– d

D + d cos α
β

β

βD + d cos α – d

D + d cos α

– d

D + d cos α
β

– d

D - d cos α
β

Inner Race (Shaft)

– 2 d D 

D2 – d2 cos α
β

Figure 10. Geometry of a ball bearing is defined by Pitch Diameter, D,
Ball Diameter, d, and Contact Angle, α. The rolling elements form an
epicyclic system similar to that of Figure 8 with a Sun gear diameter =
D – d cos α, a planet diameter = d and a ring diameter = D + d cos α.

bearing to react to a shaft-axial force. The inclination of the spin
axis is defined by the (small) contact angle α.

The tolerances of a ball bearing are tightly controlled so that
the balls must roll on the races, rather than slipping. From
inspection of the geometry in Figure 10, we can recognize that
the balls roll about an inner diameter of D − d cos α, and within
an outer diameter of D + cos α. Knowing the diameter ratios
allows us to analyze the bearing by superposition in exactly
the same fashion as previously discussed.

Table 4 presents the tabular analysis of the bearing. In the
top row, the cage is held stationary, while both the inner and
outer races are left free to rotate. A ball is rotated through an
arbitrary angle β causing the outer race to rotate in the same
direction and the inner race to rotate with opposite sense. In
the second row, all bearing elements are locked together and
the bearing is rotated in a direction opposite the first input until
the outer race is restored to its original position. The third row
presents the sum of these two motions and provides the posi-
tions of the cage and inner race.

All pertinent motions are then normalized to one rotation of
the inner race (shaft). This step is different from the gear analy-
sis, where rotations were normalized upon the carrier which
is synonymous with the bearing’s cage. From the entries of
Table 4 we can determine the rotational speeds of ball spin and
cage precession relative to shaft speed. Specifically:

and:

These frequencies of component motion combine in various
fashions when an element of the bearing becomes flawed. As
an example, consider a pit or spall on the outer race. Such a
flaw causes an impact each time a ball crosses it. Hence there
will be N impacts for every revolution of the cage. Since the
impacts are of short duration, they will exhibit many harmon-
ics. Thus we can identify an outer race fault by the presence
of spectral peaks at:

A fault on a single ball will alternately strike the inner and
outer races. This will give rise to periodic forces at twice the
ball spin frequency. Since each impact is a brief duration event,
the spectrum will contain many harmonics of 2 fball spin . Fur-
ther, the contact points (and therefore the force direction) ro-
tate at the cage precession frequency, following a single ball.
Hence a ball fault will exhibit vibration peaks at frequencies
of:

From the first row and second column of Table 4 we can de-
duce that a single ball contacts a fixed point on the inner race
with a frequency of :

A defect on the inner race will be impacted by each of the N
balls in sequence. Each impact will be brief, leading to a peri-
odic force rich in harmonics. Since the fault location rotates
with the shaft, the force direction rotates at fshaft and the re-
sulting inner race fault exhibits spectral peaks at:

It is not uncommon to be faced with an operating machine
for which bearing data are not immediately available. Reason-
able “ball park” estimates of bearing fault-frequency can be
formed by assuming α equal to 0° and d/D equal to 0.25. This
results in the approximations:

Should a race fault be evident, it is likely to “count the balls”
for you by disclosing either ≅ 0.375 N fshaft or ≅ 0.625 N fshaft as
the peak-spacing of the k N fshaft “clusters”. A single ball fault
will not disclose how many balls are in the bearing.

Dip in the Data, Bathe in the Waterfalls
Our attention returns to the small speed-reducer and the

vibration signatures it exhibits. Figure 11 shows this gearmotor
mounted in a simple test fixture. An accelerometer monitors
case vibration over the end of the transfer shaft (refer to Fig-
ure 2) and we will focus on observations made with this sen-
sor. Our test rig permits fixed and variable speed operation. All
measurements are made with the gearbox unloaded (and
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Figure 11. Gearmotor in test fixture. PCB 352C67 accelerometer moni-
tors case vibration over the worm gear end of the transfer-shaft. Omron
EE-SPX301 IR diode/receiver monitors output shaft speed, viewing disk
with one or eight holes. Other sensors measure motor-current, radial
magnetic flux and local sound pressure. Variable speed operation in
both directions is accommodated.

Figure 12. Typical order-normalized case vibration signatures. Upper
trace presents velocity spectrum with linear IPS (peak) vertical axis.
Lower trace shows corresponding g (RMS)  acceleration spectrum with
a logarithmic vertical axis. Horizontal axes are in orders of the output-
shaft speed. Source of dominant tones are marked (compare with list
of Table 1). Note that the dominance of order 331.2 (Mesh - Motor) and
the appearance of order 10.4 (3X Motor Shaft speed) qualify as sur-
prises.

Figure 13. Waterfall of constant frequency-span acceleration spectra
during variable speed operation shows low frequency (DC -100 Hz) case
vibration is dominated by two tones that vary in frequency proportional
to shaft running-speed. The amplitude axis presents g (RMS) with lin-
ear scaling; the traces are separated by 8 seconds with the oldest trace
“at the top”.

unlubricated!) in an attempt to make its inner workings more
obvious to external measurement.

Figure 12 illustrates order-normalized spectra (see sidebar)
spanning the expectations of the “shopping list” of Table 1. Two
presentations of the same measurement are made. The upper
trace shows the (linear) velocity spectrum while the lower trace
presents acceleration on a logarithmic axis. The mechanical
source identification of each peak is labeled.

Velocity measurements relate well to accepted machinery
health criteria. Clearly, the 0.55 IPS peak in this spectrum
would qualify a process machine as a ‘hot’ maintenance can-
didate! Note that this peak value occurs at order 331.2 which
appears on our shopping list as the lower motor-speed sideband
of the primary (high-speed) gearmesh. However the corre-
sponding upper motor-speed sideband (at order 404.8) is cer-
tainly not symmetric in amplitude; it is only 20% as large.
Further, this “sideband” is considerably greater than the high-
speed gearmesh “carrier” component at order 368. This quali-
fies as a surprise!

A plausible explanation for this asymmetry is that the
gearmesh is experiencing some combination of both amplitude
modulation and frequency modulation at the motor-shaft
speed. Appropriate phasing between these mechanisms can
accentuate one sideband and suppress the other. However, or-
der 331.2 also corresponds to the ninth harmonic of motor

speed and other explanations are possible.
The high-speed gearmesh is also symmetrically bounded by

±16 order and ±32 order sidebands indicating modulation at
the transfer-shaft speed and its second harmonic. These terms
are of much lower amplitude and exhibit the anticipated sym-
metry associated with simple amplitude modulation. The ex-
pected magnetic pole-passage frequency (6× motor speed) and
brush/commutator-segment contact rate (12× motor speed) are
also present at orders 220.8 and 441.6, respectively.

The (lower) acceleration trace is shown on a log axis, so that
amplitudes spanning a 1000:1 range may be seen. This com-
pression emphasizes the low amplitude features not discern-
ible in a linear display. All features identified from the veloc-
ity spectrum show up clearly in this acceleration trace.
Additionally, peaks at the transfer-shaft (order 16) and motor-
turning (order 36.8) speeds may be clearly seen. Note that an
additional (minor) “surprise” is found in this spectrum, the
peak at three times the motor shaft speed.

Clearly, presenting the measurement on an order-normalized
basis ma   When a machine operates at a truly steady speed,
the conversion from a conventional “fixed bandwidth” spec-
trum to an order-normalized display seems trivial. However,
nothing mechanical is ever really steady in its operating speed.
Even electrical power-generation systems that maintain line
frequency to a tolerance of degrees per day exhibit instanta-
neous speed variations that can “blur” spectral orders in an av-
eraged measurement made with constant bandwidth.

Consider the more extreme speed variation shown in Figure
13. Here a series of fixed bandwidth spectra are presented in a
waterfall format. Each spectrum is separated from its neighbor
by a fixed time increment so that the waterfall presents a time/
frequency/amplitude topology. In this figure, the frequency
range encompasses the transfer-shaft (order 16) and motor-shaft
(order 36.8) speeds while the machine is varied up and down
between 125 and 160 RPM. Linear amplitude scaling of the case
acceleration is shown. Certainly, any attempt to ensemble-av-
erage these spectra would result in a “blurred” picture of the
machine’s activity.

The same collection of spectra is presented as a spectrogram
in Figure 14. Here, the amplitude is encoded by color (scale to
right), frequency is horizontal and time is vertical. The time/
frequency “tracks” of the 16th and 36.8th order components are
clearly visible.

Figure 15 presents a similar analysis using order-normalized
spectrum measurement. In this presentation, the activity at
each order maintains a fixed horizontal axis position, even
though the machine speed is varying. The amplitude at each
order can vary as the machine speed changes, but the order
maintains a fixed horizontal location in each spectrum. Hence,
ensemble averaging can be applied to such spectra without fear
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Figure 14. Spectrogram display presents the same data as the water-
fall of Figure13 in an alternate format. Here, the acceleration level is
represented by color. This presentation emphasizes the time/frequency
track of dominant tones. Those shown here correspond to orders 16
(transfer-shaft speed) and 36.8 (motor speed).

Figure 15. Waterfall of order-normalized acceleration spectra during
variable speed operation. The horizontal axis spans 40 orders of out-
put shaft speed, which approximates the range of frequency span in
Figures 13 and 14. Note that the 16th and 36.8th order “tracks” become
straight lines. The companion plot presents the variation in vibration
amplitude at the 36.8 order (motor speed) with changing RPM.

Figure 16. Two tachometer wheels used in rig testing. The wheel on the
left provided one pulse per output-shaft rotation while that on the right
provided eight. Seemingly minor machining imperfections degraded
analysis when the 8/rev unit was employed. This is a common prob-
lem in “home grown” multi-pulse per revolution tachometers.

of a “blurred” result.
The amplitude variation in the 36.8 order can be seen from

the red cursor line following that order. These data are pre-
sented more clearly in the companion order track plot that
presents 36.8th order acceleration versus output shaft RPM.

Tachs can be Tacky and Taxing
As discussed in the Law and Order Normalization sidebar,

a tachometer signal is used to synchronize the analyzer to a
rotating machine for order-analysis. The sample rate is derived
as a multiple of the frequency of this pulse train. Clearly, any
frequency-multiplication process must make assumptions
about the instantaneous speed between tach pulses. For this
reason, it is good practice to apply the tachometer at the “high
speed” end of a multi-shaft gear system. Unfortunately, this is
not always possible. As in our example machine, the low-speed
process output is frequently the most accessible (often only!)
place where train speed can be measured.

One solution to this difficulty is to use a multi-pulse per
revolution tachometer such as a precision shaft encoder. Of-
ten, the teeth of a passing gear may be viewed with a shaft probe
rather than simply viewing a keyway. These are perfectly valid
approaches that minimize the amount of “mathematical” fre-
quency multiplication required. All things being equal, per-
forming an order-normalization with a high number of pulses/
revolution mechanically sensed from the machine is always
preferable.

However, things are not always equal (pun intended)! “Home
grown” multi-pulse per revolution tachometers frequently com-
promise the analysis because the multiple targets are not
equally separated. Unless you are convinced that the targets
are precisely spaced (as in a commercial encoder) be alert for
tachometer-induced artifacts.

Consider the two tachometer target wheels shown in Figure
16. These were produced in a “Scottish machine shop” (one
where the only tools are a drill press and a file). While the 8/
rev unit on the right appears reasonably symmetric, it actually
has enough variation in the target-hole locations to compromise
an analysis.

When this unit is turned at constant velocity, the resulting
tach pulses produced by the infrared interrupter module seen
in Figure 11 are not equally spaced; they “jitter” in time. That
is, the tachometer signal is frequency modulated. In contrast,
the single target disk must produce a constant rate output (as
long as it is firmly fixed to a shaft that cannot move laterally).

Consider the comparison of Figure 17. In the top figure, the
auto spectrum of the 1/rev tachometer signal is shown. This
measurement was made using constant-bandwidth analysis
with the machine running at a constant speed. The lower trace
repeats this measurement with the 8/rev disk installed. For vi-
sual simplicity, the frequency axes have been scaled to read

in orders of the shaft speed.
The spectrum of the 1/rev tach is exactly as anticipated.

There are peaks at the shaft-turning frequency and its harmon-
ics. Since the output of the interrupter is a TTL logic signal,
these harmonics are distributed with sin(x)/x amplitude. Each
peak is relatively narrow and the “noise floor” is about 40 dB
(100:1) below the fundamental peak. We would anticipate the
8/rev spectrum to have the same form with its fundamental
appearing eight times as high.

Instead, we find the 8/rev tach disk produces a strong series
of 1/rev spaced sidebands, symmetrically distributed about the
8/rev fundamental. This is the classic spectral form of a fre-
quency modulation. The sidebands are significant, starting
from only 22 dB (12.6:1) below the fundamental.

Figure 18 illustrates a 40 order normalized analysis made of
the acceleration signal using the 1/rev tachometer with the
machine operating at constant speed. This low frequency study
provides clean definition of the 16th order transfer-shaft and
36.8th order motor-speed components. It also shows virtually
every order of the output shaft as a clean and discernible fea-
ture.

The same analysis is repeated in Figure 19 using the 8/rev
tach disk. Note the difference in form. While the 16th and 36.8th

order components are properly placed, the lower amplitude
terms are severely distorted. As an example, note the first three
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Order-normalized spectrum measurements may be made
by several techniques. When the studied machine operates
at a constant speed, an ordinary spectrum analysis may be
made and the frequency axis may be scaled to orders by di-
viding by the shaft running-speed. When the machine speed
is more agile, specific hardware and software must be em-
ployed to sample the measured signals a constant number
of times per shaft revolution, rather than sampling on a con-
stant time-interval basis.

In a fixed-bandwidth operation, an analyzer collects N
successive samples from an analog time-history at a sample
rate fs. The analog signal is pre-filtered by a low-pass anti-
aliasing filter set to the desired analysis frequency range,
Fspan and the sample rate is set to k Fspan, where k is a con-
stant specific to the analyzer. Each captured time-history is
transformed to yield a spectrum. The following spans and
resolutions result:

Δt = 1/fs = 1/(kFspan) = time between adjacent time points
(S)

Tspan = N Δt = duration of each time capture or memory load
period (S)

ΔF = 1/Tspan = difference between adjacent frequency
points (Hz)

Fspan = N ΔF/k = frequency range presented (Hz)

In order-normalized analysis, both the frequency range
and sample rate must vary in proportion to the machine
speed. This is accomplished by measuring the shaft speed
with a tachometer and deriving a sample rate equal to k Ospan
times the shaft speed. Ospan is the maximum number of
shaft-speed orders (multiples) to be measured in a spectrum.
The anti-aliasing filter must constantly adjust to limit the
incoming signal bandwidth to Ospan times the shaft-turning
frequency. This results in the following spans and resolu-
tions:

ΔR = 1/fs = 1/(kOspan) = shaft-angle between adjacent sig-
nal samples (Revolution)

Rspan = N ΔR = number of turns in each memory capture
(Revolution)

ΔO = 1/Rspan =  difference between adjacent order points
(Order)

Ospan= N ΔO/k = order span presented (Order)

Law and Order Normalization
Typical analyzers (of either FFT or time compression type)

require between 2.56 and 4 samples per maximum order
spanned. This is the same k multiple relating the analyzer’s
sample-rate to the frequency band studied in normal fixed-
bandwidth analysis. The exact numeric value is determined
by the analyzer’s design specifics.

The functional block diagram of a hybrid Tracking
Adapter is shown below. Tracking adapters have been sup-
planted by more modern methods, but many of these “ba-
sic workhorses” remain in daily service. This figure illus-
trates several basic points of technology worthy of
discussion.

The tracking adapter performs two related functions. It de-
rives a sample-rate proportional to shaft speed from a refer-
ence tachometer signal (a once-per-turn pulse train), and it
provides an anti-aliasing filter with bandwidth instanta-
neously adjusted in proportion to the shaft speed. At the
heart of this instrument is a circuit called a phase-locked
loop (PLL) which is involved in both functions.

The tachometer typically provides a single pulse-per-
revolution; we require many pulses-per-revolution to accu-
rately define each turn. The necessary frequency multipli-
cation is accomplished by the PLL, a servo loop which forces
a local voltage controlled oscillator (VCO) to produce a
pulse train at (integer) M times the tachometer frequency;
this is rate divided by integer D and applied to a spectrum

Figure 17. Comparison of spectra of the tachometer signals, 1/rev disk left, 8/rev right. The machine was run at constant speed and spectra were
measured using normal constant-bandwidth analysis. The frequency axes have been normalized to orders by dividing by the dominant tachometer
frequency. While the left plot shows some minor evidence of machine-speed variation, the right plot exhibits rampant 1/rev sidebands about the 8/
rev fundamental. This indicates the 8/rev tachometer pulse train is frequency modulated by imperfections in the placement of the eight target holes
(see Figure 16).

peaks which are shown between integer multiples of the shaft
speed.

Precise order-normalized measurements require precise
speed transduction. Use your spectrum analyzer to validate the
performance of your tachometer before using it as the reference
for more involved studies. Whenever feasible, verify a multi-
pulse tachometer by comparing its output against a 1/turn sig-

nal experiencing the same machine-speed variability.

Closure
All measurements presented in this article were made with

the new multichannel Data Physics SignalCalc® 620 VXI sys-
tem illustrated in Figure 20. Data Physics also offers similar
analytic capabilities in more compact 430 (ISA card) and ACE
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F Ospan max spanRPM≥ × /60

analyzer’s ADC as the sample rate. Thus selecting the ap-
propriate integers M and D allows (limited) setting of the
number of samples per revolution.

Within the phase-locked loop, an analog voltage propor-
tional to frequency is developed. This signal is used to
“tune” a voltage-controlled low-pass filter, the anti-aliasing
filter applied to the measured vibration signal. Thus the
upper frequency of this filter is caused to track the sample
rate (and thus the shaft speed) providing variable frequency
alias rejection as RPM varies.

Tracking adapters made order-normalized spectrum
analysis possible; they also exhibited several shortcomings.
Since the PLL only “updates” at each tach-pulse arrival, the
circuit “assumes” the shaft to rotate with constant angular
velocity between pulses. This is a poor match for important
run-up examinations. In general, error in sample placement
increases throughout the revolution rather than being uni-
formly distributed throughout the measurement.

A filter within the PLL provides some “memory” to sta-
bilize the circuit between tachometer pulses. This loop fil-
ter seriously reduces the circuit’s ability to follow rapid
speed changes accurately. Such “slew-rate” limiting be-
comes more pronounced at high M values required to track
a large number of orders.

The tunable anti-aliasing filter limits dynamic range as
it is not possible to build a variable frequency analog filter
with anywhere near the same transition-band steepness as
can be done in fixed-frequency designs. Alternative tech-
nologies incorporating charged-coupled devices have
proven even less effective in this regard.

Tracking adapters are hardware intensive and thus expen-
sive. The added weight and volume of “another instrument”
is never appreciated when making field measurements.

Modern analyzers employ a different approach, one
which adds very little additional hardware to the instru-
ment. This digital re-sampling process overcomes all of the
shortcomings common to tracking adapters and provides ac-
curate, resolute analysis with deep dynamic range for all
machines including those that accelerate rapidly. The fol-
lowing figure illustrates the re-sampling process.

The vibration signal is sampled by an ADC running at a
constant sample rate and is protected by a standard fixed-
frequency anti-aliasing filter. The bandwidth of this filter,
Fspan, is selected such that . . .

where RPMmax is the maximum machine shaft speed antici-
pated and Ospan is the maximum order of shaft rotation to
be analyzed. The sample-rate fs is set to a deliberately high
value with regard to the input filter (fs = 5.12 Fspan being
typical).

The resulting over-sampled digital time history is passed
to the input memory of a digital amplitude-interpolation fil-
ter. The output of this low-pass filter is sampled at a fixed
number of times per revolution. These sample times are not
uniformly spaced in time. Rather, each sample is taken at a
time corresponding to a shaft rotation of dR from its prede-
cessor. These fixed-angle sample times are computed from
successive periods of the tachometer signal.

The tachometer pulse train is applied to a precise timing
circuit which measures the period between pulses. These
periods are sent to an interpolation module which computes
the appropriate times at which to sample the interpolation
filter’s output. The sample times between tachometer pulses
are computed by a curve-fitter which assumes the shaft
experiences constant acceleration between pulses. This
module accepts a pulse-per-revolution argument, allowing
the use of one or more equally spaced tachometer pulses per
shaft rotation.

The resulting digital angle-history is presented for sub-
sequent FFT and average processing. The interpolation fil-
ter introduces a slight processing delay between the ADC
input and the presentation of the angle-history. However,
this delay affects all channels identically and the process
proceeds in real-time without compromise.

Figure 18. Order-normalized acceleration spectrum measured using 1/
rev tachometer disk shown in Figure 16. Machine was run at constant
speed and 50 spectra averaged. This plot spans 40 orders with a hori-
zontal resolution of 0.1 orders (each spectrum was computed from a
10 output-revolution capture). The spectrum is dominated by the tones
at transfer-shaft and motor-shaft speeds. Note, however, that virtually
every multiple of the output-shaft speed (1/rev) can be seen clearly in
this plot.

Figure 19. Repeat of the analysis of Figure 18 using the 8/rev tachom-
eter disk. Note the distortion, blurring and misplacement of low am-
plitude terms. As an example, the first three peaks are no longer seen
as multiples of 1/rev; they appear at non-integer orders! Poor precision
in machining a multiple-target tachometer can compromise the preci-
sion and dynamic range of an order-normalized analysis. Your spec-
trum analyzer can identify the frequency modulation introduced by
imprecise tachometer targets.
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Figure 20. The SignalCalc® 620 Dynamic Signal Analyzer by Data Phys-
ics Corporation uses HP VXI frames and modules to provide a full-func-
tion FFT/Octave-Band/Order-Tracking analyzer with up to 128 channels
of input. A broad range of configurations is offered including choice
of in-frame or external CPU, any mix of HP E1432A, HP E1433A and
HP E1434A modules, real-time recording, ActiveX Connectivity and
MIMO processing. All configurations respond to the simple, consistent
SignalCalc interface used in all Data Physics analyzers. The software
is compatible with Windows® NT, 95 and 98 operating systems.

(PCMCIA module) systems of lower channel count.
We have introduced some recommended work methods for

machinery diagnosticians with particular emphasis on being
prepared to appreciate and critique measurement results. Ba-
sic signature frequencies for bearings and gears have been de-
veloped and their utility visualized through experiment.
Theory and implementation of order-normalized spectrum
analysis have been reviewed. Certain frailties of tachometer
systems have been brought to your attention. In short, this has
been a very full lecture. Your quiz will come tomorrow, in field.
Good luck and Class Dismissed!


