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A method for gearbox fault diagnosis consists of feature extraction and 

fault identification. Many methods for feature extraction have been 
devised for exposing nature of vibration data of a defective gearbox. In 
addition, features extracted from gearbox vibration data are identified 
by various classifiers. However, existing literatures leave much to be 
desired in assessing performance of different combinatorial methods for 
gearbox fault diagnosis. To this end, this paper evaluated performance of 
several typical combinatorial methods for gearbox fault diagnosis by 
associating each of multifractal detrended fluctuation analysis (MFDFA), 
empirical mode decomposition (EMD) and wavelet transform (WT) with 
each of neural network (NN), Mahalanobis distance decision rules 
(MDDR) and support vector machine (SVM). Following this, 
performance of different combinatorial methods was compared using a 
group of gearbox vibration data containing slightly different fault 
patterns. The results indicate that MFDFA performs better in feature 
extraction of gearbox vibration data and SVM does the same in fault 
identification. Naturally, the method associating MFDFA with SVM 
shows huge potential for fault diagnosis of gearboxes. As a result, this 
paper can provide some useful information on construction of a method 
for gearbox fault diagnosis.  
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1 Introduction  

A gearbox, composed of many elements, usually plays an important part in 
mechanical transmission. When something goes wrong with a gearbox, 
vibration data from a gearbox generally display nonlinear and non-stationary 
properties. Consequently, fault diagnosis of gearboxes is a difficult problem, 
especially when fault patterns are very similar. Currently, many methods for 
feature extraction have been put forward for revealing nature of gearbox 
vibration data. Additionally, these features extracted from gearbox vibration 
data are identified by various classifiers. Currently, many methods for 
gearbox fault diagnosis have been constructed by associating a method for 
feature extraction with that for fault identification. Unfortunately, evaluation 
of performance of these methods for gearbox fault diagnosis leaves much to 
be desired. In this paper, performance of three typical methods for feature 
extraction, multifractal detrended fluctuation analysis (MFDFA), empirical 
mode decomposition (EMD) and wavelet transform (WT), was assessed using 
a group of gearbox vibration data containing very similar fault patterns. In the 
following, performance of three typical classifiers, neural network (NN), 
Mahalanobis distance decision rules (MDDR) and support vector machine 
(SVM) was compared. The results indicate that MFDFA performs better in 
feature extraction of gearbox vibration data and SVM does in classification of 
characteristic parameters of gearboxes. Naturally, the method associating 
MFDFA with SVM seemingly has high potential for fault diagnosis of 
gearboxes.  

This paper was structured as follows. The following section outlined the 
principles of WT, EMD and MFDFA. In the third section, three typical 
classifiers, i.e. NN, MDDR and SVM, were separately formulated. In the 
fourth section, the effectiveness of MFDFA, EMD and WT in feature 
extraction of gearbox vibration data was compared by each of NN, MDDR 
and SVM and a discussion was set up. Finally, a conclusion was drawn in the 
fifth section.  

 
2 Three methods for data analysis 
2.1 Wavelet transform 

Wavelet transform (WT) can be used to process non-stationary data1, 2. For a 
signal ( )x t , the continuous WT is defined below1, 2. 

( ) 1, ( ) ( )t bx a b x t dt
aa

+∞

−∞

−
= Ψ∫   (1) 

Here, a  and b  represent the scale and time factors, respectively, the 

symbol ( )tΨ  indicates a wavelet basis function and the symbol ( )tΨ  

stands for the conjugation of ( )tΨ . As a result, there is a distinct lack of 
adaptability for the analyzed signal in the WT algorithm since a prior 
knowledge about the basis function is required.  

 
2.2 Empirical mode decomposition (EMD) 

Different from WT, EMD is an adaptive method for processing 
non-stationary and nonlinear data3. By EMD, a signal ( )x t can be adaptively 
decomposed into a group of components falling into different frequency 
bands and a trend3: 
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Here, ( )ic t and r denote the ith component and general trend of the 

signal ( )x t , respectively, and k represents the number of the components. 
In this paper, a k-dimension vector was constructed as characteristic 
parameters of the signal ( )x t , defined as 
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2.3 Multifractal Detrended fluctuation analysis (MFDFA) 
MFDFA, as an extension of the monofractal DFA, can be applied to 

effectively reveal the multifractality of non-stationary time series4. The 

execution of MFDFA for a series kx with the length N comprises the next 
five steps4: 
(1) A “profile” is constructed as 

1
( ) [ ]
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Since performed in the third step again, the detrending operation in this step 
is optional.  

(2) The profile )(iY  is split into int( / )sN N s=  non-overlapping 

segments that have the same length s . However, because the length N of the 
series is seldom divisible by the time scale s , a small part of the profile may 
remain unused. To fully use these data, the same operation is again implemented 

from the opposite direction. In the end, sN2 data segments are got. 
(3) The least-square algorithm is adopted to fit the local trend for each of 
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the sN2 data segments. Then the variance is defined as 
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for the vth segment, sNv ,...,1= , and  
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for the vth segment, ss NNv 2,...,1+= . Here, )(iyv is the fitting 
polynomial for the vth segment. Since the detrending operation is to subtract 
the polynomial fits from the profile, DFA of different orders may yield 
different detrending results. As a result, by making a comparison between the 
results derived from DFA of different orders, the nature of the polynomial 
trend in the time series can be determined4. 

(4) The qth-order fluctuation function )(sFq can be acquired by 

calculating the average for all the sN2 segments: 
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Here, any real value can be assigned to the index q  except zero. For 

2=q , MFDFA degenerates into the standard DFA. For a different time 

scale s , steps 2~4 will be repeated. Thus, the fluctuation )(sFq  can be 

obtained for different q  and s . In addition, it must be noted that a 

definition of )(sFq , which relates to the DFA order m , is accepted only 

for 2+≥ ms ( m is the order of the polynomial fits). 

(5) A power-law relation is established between )(sFq  and s  for 

different q : 
( )( ) ~ H q

qF s s    (8) 

For stationary time series, )2(H  is equal to the famous Hurst exponent 

H 4.  
Moreover, when 0=q , the following logarithmic averaging operation is 

substituted for the averaging procedure in Equation (7) 
2
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A monofractal time series typically exhibits identical scaling behavior in all 
the segments and thus the corresponding )(qH  is independent of q ; 
conversely, a multifractal time series generally shows distinctly different 
scaling behavior in different segments and then there is a heavy dependence 

of )(qH  on q . In addition, the mean )(sFq  for the positive and 

negative q  will be mostly dominated by the segments v with large and 

small variance, respectively. As a result, the general Hurst exponents )(qH  
for the positive and negative q  are applicable to describe the scaling 
behavior of the segments with large and small fluctuations, respectively4. 

 
3 Three typical classifiers 
3.1 Neural network (NN) 

NN is a nonlinear method for machine learning and pattern classification5-7. 
In theory, a three-layer back-propagation neural network with a large enough 
number of hidden-layer nodes can serve to mimic dynamical behavior of any 
nonlinear system5-7.  However, it seems to be dealt with only empirically at 
present how to determine initiative and hidden-layer parameters of a neural 
network5-7.  
 

3.2 Mahalanobis distance decision rule (MDDR) 
The Mahalanobis distance is a measure of similarities of two sets of data8. 

Different from the Euclidean distance, the Mahalanobis distance, which is 
scale-invariant, enables the correlations between data to be examined. For the 
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 as the covariance of the matrix X . 

Theoretically, the Mahalanobis distance between the sample 

( )Tnyyyy ,,, 21 2= and the kth data group kX  that has the mean kx  

and the covariance matrix kC  is defined as 

1( ) ( ), 1, ,T
k k k kMD y x C y x k M−= − − = 2   (10) 

If  

, 1, , 1, 1, ,l kMD MD k l l M≤ = − +2 2   (11) 
then the sample y  is classified as the lth group. 
  

3.3 Support vector machine (SVM) 
SVM, a supervised method for machine learning9, has been used in a wide 

variety of fields, such as chaotic time series prediction10, imaging biomarker 
identification11, pattern classification12and fault diagnosis13. Given a training 
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here the training vector contains two different categories and the element iy  

in the indication vector serves to indicate which category the sample ix  in 
the training vector belongs to. Then, a SVM is trained to find a 
maximum-margin hyperplane for distinguishing the samples marked with 

1iy = −  from those marked with 1iy = . If there is no hyperplane which 
can cleanly separate these two categories, a soft margin method can be 
employed to determine a hyperplane which can separate these two categories 
as cleanly as possible, still keeping the most maximum distance to the closest 
cleanly separated points14. Afterwards, an optimum balance between two 
objectives of a large margin and a small error penalty can be achieved by 
solving the next equation 
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where ix  indicates a non-negative slack parameter, ( 0)C >  stands for 
a regularization parameter, w  means a normal vector to the hyperplane and 

( )ixφ  serves to project ix  into a higher-dimensional space. Considering 

that the vector w  often features high dimensionality, Equation (12) is 
usually transformed into the next dual problem 
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Here, Q is a positive semidefinite matrix with ( , )ij i j i jQ y y K x x=  
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and ( , )i jK x x  indicates a kernel function with 

( , ) ( ) ( )T
i j i jK x x x xφ φ= . Subsequently, by analyzing the above 

primal-dual relationship, one can obtain the optimal w   
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Accordingly, the decision function can be stated as  
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Here, it must be noticed that original SVM can be used only for solving a 
binary classification problem15-16. Nonetheless, the multi-class classification is 
a frequently faced problem in real world. To address this problem, 
“one-against-one” and “one-against-all” approaches have been proposed15-16. 
In this paper, the “one-against-one” approach was employed to solve the 
multi-class classification problem. For the “one-against-one” approach, if 
there is p classes for classification, then one needs to construct 

( 1) 2p p −  binary classifiers15-16. The data from the kth and the lth classes 
can be separated by solving the following binary classification problem15-16 
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Here, a voting strategy is adopted for classification: after votes are cast for a 
data sample using all the binary classifiers, the data sample is considered to 
belong to the class which wins the maximum votes. In this paper, the 
LIBSVM package was used for performing all the SVM operations17.  

 
4 Comparisons of MFDFA, EMD and WT by NN, MDDR and SVM 
4.1 Fault diagnosis of gearboxes 

A gearbox experiment, whose sketch map is drawn in Figure 1, was 
conducted for generating desirable gearbox vibration data containing slightly 
different gear faults. The tooth numbers of the gears 1-4 of the gearbox in 
Figure 1 are 25, 40, 22 and 55, respectively. The frequency converter was 
employed to control an output speed of the three-phase asynchronous motor 
in Figure 1. In this experiment, slight-scratch, medium-scratch and 
broken-tooth faults were individually fed into the gear 1. Here, it must be 
emphasized that the slight- and medium-scratch faults are only slightly 
different and tough to separate. As a result, these gearbox vibration data can 
be used to assess a performance of an algorithm. From the housing close to 
the gear 1, vibration data were collected by an acceleration transducer. For 
each gearbox condition, thirty-five pieces of data were gathered, each with 
the sample frequency 16384 Hz and the length 4096 points. Afterwards, 
fifteen randomly selected pieces served as training data and the remaining 
ones testing data. In this paper, two sets of vibration data were separately 
gathered under two different motor running speeds: 1200 RPM (Revolutions 
Per Minute) and 2000 RPM.  

Figure 2 displays the vibration data under the motor running speed 1200 RPM. 
To start with, MFDFA was adopted to analyze these gearbox vibration data and the 
results are demonstrated in Figure 3. As demonstrated in Figure 3, the multifractal 
spectra for the normal and broken-tooth conditions clearly differ from those for the 
scratch conditions in the positions of extreme points of the multifractal spectra. 
Also, the multifractal spectra for the slight- and medium-scratch conditions are 
different only in the shapes of the multifractal spectra. Consequently, the shapes 
and positions of the multifractal spectra allow a separation between different 
gearbox conditions. With the capabilities to almost determine the shapes and 

positions of the multifractal spectrum, five characteristic parameters: maxα , 

max( )f α , extα , minα  and min( )f α , corresponding to coordinates of 
the left-end, right-end and extreme points of the multifractal spectrum, were 
extracted for describing a gearbox condition. Moreover, to benchmark the 
performance of MFDFA, EMD and WT were separately applied to research these 
gearbox vibration data. According to the results derived from EMD, the vibration 

data corresponding to each gearbox condition were uniformly decomposed into 
eleven components by each of EMD and WT. Additionally, in light of Equation (3), 
an eleven-dimension characteristic vector was built for each of EMD and WT. 
Afterwards, NN, MDDR and SVM were separately employed to classify the 
characteristic parameters derived from each of MFDFA, EMD and WT. 
Consequently, comparisons of performances of MFDFA, EMD and WT are shown 
in Table 1. As shown in Table 1, although using fewer characteristic parameters for 
describing gearbox conditions, MFDFA seemingly gives a better performance than 
each of EMD and WT in feature extraction of gearbox vibration data. In addition, 
Table 1 reports that SVM performs better than each of NN and MDDR in 
classification of characteristic parameters. It means that the method associating 
MFDFA with SVM seems to show high potential for fault diagnosis of the 
gearbox. 

 
Figure 1. A sketch map of gearbox experiment table. 

 

-4
0
4

-6
0
6

-20
0

20

0 0.05 0.1 0.15 0.2 0.25-30
0

30

Time(s)

A
m

pl
itu

de
(m

.s-2
)

a

b

c

d

 
Figure 2. Four types of gearbox vibration data under the motor running speed 
1200RPM, (a)-(d) correspond to normal, slight-scratch, medium-scratch and 
broken-tooth conditions, respectively. 
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Figure 3 Multifractal spectra of four types of gearbox vibration data under 
the motor running speed 1200 RPM. 
 

Subsequently, Figure 4 reveals gearbox vibration data under the motor 
running speed 2000RPM. To begin with, MFDFA was made use of processing 
these gearbox vibration data and the results are revealed in Figure 5. As 
revealed in Figure 5, the multifractal spectra for different gearbox conditions 
have markedly different positions. 

Therefore, the shapes and positions of the multifractal spectra enable 
different gearbox conditions to be discriminated. Afterwards, the same five 
characteristic parameters as those extracted in the above example served as 
characteristic parameters of these gearbox vibration data. Also, to further 
benchmark the performance of MFDFA, EMD and WT were separately 
employed to study these gearbox vibration data. According to the results 
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derived from EMD, these gearbox vibration data were uniformly decomposed 
into twelve components by each of EMD and WT. 

Table 1. Comparisons of MFDFA, EMD and WT by NN, MDDR and SVM in 
fault diagnosis of gearboxes for the motor running speed 1200 RPM. 

Algorithms 
The number of 
characteristic 
parameters 

Success rates of fault 
diagnosis (%) 

NN MDDR SVM 
MFDFA 5 97.50 97.50 100.00 

EMD 11 97.50 93.75 100.00 

WT 11 27.50 30.00 35.00 
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Figure 4. Four types of gearbox vibration data under the motor running speed 
2000 RPM, (a)-(d) correspond to normal, slight-scratch, medium-scratch and 
broken-tooth conditions, respectively. 
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Figure 5. Multifractal spectra of four types of gearbox vibration data under 
the motor running speed 2000 RPM. 
 
Table 2. Comparisons of MFDFA, EMD and WT by NN, MDDR and SVM in 
fault diagnosis of gearboxes for the motor running speed 2000 RPM. 

Algorithms 
The number of 
characteristic 
parameters 

Success rates of fault diagnosis (%) 

NN MDDR SVM 

MFDFA 5 100.00 100.00 100.00 

EMD 12 82.50 91.25 95.00 

WT 12 36.25 32.50 35.00 
 
According to Equation (3), a twelve-dimension characteristic vector was 
constructed for each of EMD and WT. Next, NN, MDDR and SVM were 
separately used to classify the characteristic parameters extracted by each of 
MFDFA, EMD and WT and the results are demonstrated in Table 2. As 
demonstrated in Table 2, although using fewer characteristic parameters for 
characterizing gearbox conditions, MFDFA delivers a better performance than 
each of EMD and WT in feature extraction of gearboxes. Furthermore, Table 
2 states that SVM performs better than each of NN and MDDR in 
classification of characteristic parameters. Accordingly, the method 
associating MFDFA with SVM proves reliable in fault diagnosis of gearboxes 
again. 

 
4.2 Discussions 

In this paper, MFDFA, EMD and WT were employed to probe gearbox 
vibration data containing slightly different gear faults. The results show that 
the multifractal spectrum shows a great sensitivity to minor changes of 
gearbox conditions and can be exploited for characterizing gearbox 
conditions. In addition, although using fewer characteristic parameters for 
characterizing gearbox conditions, MFDFA seems to produce a better 
performance in feature extraction of gearbox vibration data. In fact, MFDFA 
allows a long series to be converted into a much shorter series, which distils 
essence of the original series. Consequently, compared with each of EMD and 
WT, MFDFA has a clear advantage in exhibiting nonlinear properties of a 
complex gearbox system.  

Also, the performances of NN, MDDR and SVM were compared. Although 
applied to pattern classification in a wide range of areas, the NN algorithm, 
using the principles of empirical risk minimization, has being confronted with 
many tough problems9, such as easily getting into local optimization, strict 
requirements for large samples and poor generalization performances. 
Fortunately, the SVM algorithm, using the principles of structure risk 
minimization, can overcome some of difficulties that the NN algorithm is 
facing. Consequently, SVM has an obvious advantage over each of NN and 
MDDR, especially when facing the situations of small samples and strong 
nonlinearity. Nevertheless, SVM still encounters some problems in 
determining a kernel function and an initiative value. By contrast, as a linear 
classifier, MDDR can successfully avoid some difficulties which NN and 
SVM run into. Accordingly, although performing slightly more poorly than 
SVM, MDDR seems to be more computably efficient for use. Indeed, an 
earlier work has demonstrated the effectiveness of MDDR in classification of 
rolling-bearing characteristic parameters extracted by MFDFA18. In general, 
SVM holds an edge over MDDR but has a more complex design and higher 
time cost, whereas MDDR performs slightly more poorly than SVM but looks 
easier for use. Hence, the method associating MFDFA with each of SVM and 
MDDR is recommended for fault diagnosis of gearboxes in this paper.  

 
5 Conclusions 

This paper adopted MFDFA, EMD and WT to explore gearbox vibration 
data containing slightly different gear faults and compared their performances. 
The comparisons indicate that the multifractal spectrum acquired by MFDFA 
is very sensitive to small changes of gearbox conditions. Furthermore, the 
effectiveness of NN, MDDR and SVM were compared. The results show that 
SVM performs better than each of NN and MDDR. Also, it is pointed out that 
MDDR is more computably efficient for use than each of NN and SVM, 
although delivering a slightly poorer performance than SVM. Consequently, 
the method associating MFDFA with each of SVM and MDDR demonstrates 
great potential for fault diagnosis of gearboxes.  
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